bc贷

搜索 猫眼电影 融媒体矩阵
  • 山东手机报

  • 猫眼电影

  • 大众网官方微信

  • 大众网官方微博

  • 抖音

  • 人民号

  • 全国党媒平台

  • 央视频

  • 百家号

  • 快手

  • 头条号

  • 哔哩哔哩

首页 >新闻 >社会新闻

颠覆传统信息搜索,DeepRetrieval让模型端到端地学会搜索!

2025-04-14 12:15:20
来源:

猫眼电影

作者:

王怀臣

手机查看

  猫眼电影记者 刘世昌 报道y85ouztigy6ysf5y

在信息检索系统中,搜索引擎的能力只是影响结果的一个方面,真正的瓶颈往往在于:用户的原始 query 本身不够好。

尤其在专业搜索场景(如文献、数据库查询)中,用户往往无法用精确、完整的表达描述他们的需求。

那么问题来了:能不能教大模型优化原始 query 的表达方式,从而让已有检索系统的能力被最大化激发?

来自 UIUC 的 Jiawei Han 和 Jimeng Sun 团队的一项最新工作DeepRetrieval就是针对这个问题提出了系统性解法,只需3B 的 LLM即可实现 50 个点以上的提升。

论文标题:DeepRetrieval: Hacking Real Search Engines and Retrievers with Large Language Models via Reinforcement Learning论文地址:https://arxiv.org/pdf/2503.00223开源代码:https://github.com/pat-jj/DeepRetrieval开源模型:https://huggingface.co/DeepRetrieval

一句话概括:DeepRetrieval 是一个基于强化学习(RL)的 query 优化系统,训练 LLM 在不同检索任务中优化原始查询,以最大化真实系统的检索效果。

它不是训练一个新的 retriever,也不是让模型直接回答问题,而是:

在不改变现有搜索系统的前提下,通过优化原始 query,让「提问方式」变得更聪明,从而获取更好的结果。

更多有意义的讨论请读原文正文和附录的 Discussion 部分。

方法细节

方法要点

输入:原始查询 q输出:改写后的查询 q′(自然语言、布尔表达式或 SQL)环境反馈:使用 q′ 去检索系统中查询 → 返回结果 → 与 groundtruth 对比,计算 reward,reward 为 task-specific 检索表现(如 Recall@K、NDCG@K、SQL accuracy)使用 PPO 进行训练,并加入格式奖励(format correctness)与 KL-regularization 保证训练稳定,优化目标如下:

其中,π_ref 是参考策略(reference policy),通常指的是在强化学习开始之前的初始模型。β 是一个合适的 KL 惩罚系数,用于控制正则化的强度。KL 散度项的作用是惩罚当前策略与参考策略之间的过大偏离,从而在强化学习训练过程中保证策略更新的稳定性。

实验结果

真实搜索引擎的文献搜索

首先在真实的搜索引擎上进行实验,文中用到了专业搜索引擎 PubMed 和 ClinicalTrials.gov。无需改动搜索引擎或其它任何检索器,仅通过端到端地优化 query 表达,DeepRetrieval 就可以让结果获得 10 倍提升,远超各个商业大模型和之前的 SOTA 方法 LEADS(蒸馏 + SFT 方法)。

Evidence-Seeking 检索:通用搜索引擎的革新潜力

DeepRetrieval 在 Evidence-Seeking 检索任务上的优异表现令人瞩目。如表 1 所示,结合简单 BM25,这个仅有 3B 参数的模型在 SQuAD、TriviaQA 和 NQ 数据集上超越了 GPT-4o 和 Claude-3.5 等大型商业模型。

Evidence-Seeking 任务的核心是找到支持特定事实性问题答案的确切文档证据,在通用搜索引擎环境中,这一能力尤为关键。作者团队指出,将 DeepRetrieval 应用到 Google、Bing 等通用搜索引擎的 Evidence-Seeking 场景将带来显著优势:

精准定位事实文档:通用搜索引擎包含海量信息,用户难以构建能精确定位证据段落的查询。DeepRetrieval 可将简单问题转化为包含关键术语、同义词和限定符的复杂查询,显著提高找到权威证据的概率。克服知识时效性限制:模型能够将「2024 年奥运会金牌榜前三名」等超出 LLM 知识截止日期的问题转化为精确搜索表达,使检索系统能够找到最新事实证据。多源验证能力:通过优化查询帮助搜索引擎找到多个独立来源的事实证据,从而交叉验证信息准确性,这是纯 LLM 问答无法实现的关键优势。

作者团队表示会将这部分的延伸作为 DeepRetrieval未来主要的探索方向之一

Classic IR(Sparse / Dense)

在 BM25 和 dense retriever 下,DeepRetrieval 提供了平均 5~10 点 NDCG 提升,并且:BM25 + DeepRetrieval 和多数 dense baseline 水平相当。

结合极快的检索速度(BM25 vs dense:352s vs 12,232s),展示了一个现实可部署、性能不俗的高效方案。

SQL 检索任务

在 SQL 检索任务中,DeepRetrieval 摆脱了对 groundtruth SQL 的依赖,直接利用生成 SQL 的执行成功率优化模型,通过生成更精准的 SQL 语句,使得模型在 Spider、BIRD 等数据集上的执行正确率均超过对比模型(包括 GPT-4o 和基于 SFT 的大模型)。

探索胜于模仿:RL 为何超越 SFT

DeepRetrieval 的实验揭示了强化学习(RL)在搜索优化上相比监督微调(SFT)的独特优势。实验数据令人信服:在文献搜索上,RL 方法的 DeepRetrieval(65.07%)超过 SFT 方法 LEADS(24.68%)近三倍;在 SQL 任务上,从零开始的 RL 训练(无需任何 gold SQL 语句的监督)也优于使用 GPT-4o 蒸馏数据的 SFT 模型。

这种显著差异源于两种方法的本质区别:SFT 是「模仿学习」,试图复制参考查询,而 RL 是「直接优化」,通过环境反馈学习最优查询策略。SFT 方法的局限在于参考查询本身可能不是最优的,即使是人类专家或大模型也难以直观设计出最适合特定搜索引擎的查询表达。

论文中的案例分析进一步证实了这一点。例如,在 PubMed 搜索中,DeepRetrieval 生成的查询如「((DDAVP) AND (Perioperative Procedures OR Blood Transfusion OR Desmopressin OR Anticoagulant)) AND (Randomized Controlled Trial)」融合了医学领域的专业术语和 PubMed 搜索引擎偏好的布尔结构,这种组合很难通过简单模仿预定义的查询模板获得。

相反,RL 允许模型通过尝试与错误来探索查询空间,发现人类甚至未考虑的有效模式,并直接针对最终目标(如 Recall 或执行准确率)进行优化。这使 DeepRetrieval 能够生成高度适合特定搜索引擎特性的查询,适应不同检索环境的独特需求。

这一发现具有重要启示:在追求最佳检索性能时,让模型通过反馈学习如何与检索系统「对话」,比简单模仿既定模式更为有效,这也解释了为何参数量较小的 DeepRetrieval 能在多项任务上超越拥有更多参数的商业模型。

模型 Think&Query 长度分析

通过分析 DeepRetrieval 在训练过程中模型思考链和查询长度的变化,可以发现以下关键洞见

思考链长度演变

与「aha moment」相反,DeepRetrieval 的思考链长度随训练呈下降趋势,而非增长。这与 DeepSeek-R1 报告的「aha moment」现象形成鲜明对比,后者的思考链会随训练进展变得更长。图 4(a) 清晰地展示了 Qwen 模型思考链从初始约 150 tokens 逐渐降至稳定的 50 tokens 左右,而 Llama 模型的思考链更短,甚至降至接近 25 tokens。

查询长度特征

实验揭示了思考过程对查询长度的显著影响。无思考过程的模型容易陷入次优解,如图 4(b) 所示,Qwen 无思考版本生成极长查询(500-600 tokens),表现出过度扩展的倾向。相比之下,有思考过程的模型保持更为适中的查询长度,Qwen 约 150 tokens,Llama 约 100 tokens。有趣的是,不同模型采用不同长度策略,但能达到相似性能,表明查询生成存在多样有效路径。

性能与思考过程关系

思考过程对检索性能有决定性影响。图 4(c) 表明,具备思考能力的模型性能显著提升,有思考的模型 Recall@3K 能达到 65%,而无思考模型仅 50% 左右。此外,训练效率也明显提高,有思考的模型更快达到高性能并保持稳定。论文附录 D.1 的分析表明,思考过程帮助模型避免简单地通过增加查询长度和重复术语来提升性能,而是引导模型学习更有效的语义组织策略。

关键结论

DeepRetrieval 展示了思考过程在信息检索中扮演「探索促进器」的关键角色。与数学或编程问题不同,检索任务不需要像「aha moment」那样的突然顿悟现象。相反,检索优化遵循「先详细思考,后逐渐精简」的模式,模型在内化有效策略后,不再需要冗长思考。这表明检索任务中思考链的主要功能是探索,一旦策略稳定便可简化。

这种分析表明,适当的思考过程设计对于构建高效的检索优化系统至关重要,能够在不增加模型参数的情况下显著提升性能,为未来的 LLM 应用于搜索任务提供了重要设计思路。

结论

DeepRetrieval 的贡献在于揭示了一个常被忽视但至关重要的事实:检索效果的上限不仅在于检索器本身,更在于如何「提问」。

通过强化学习教 LLM 改写原始查询,DeepRetrieval 不仅摆脱了对人工标注数据和大模型蒸馏的依赖,还在多个任务上证明了改写 query 的巨大潜力。这项工作为搜索与信息检索领域带来了新的思考:未来的检索优化,不仅是提升引擎算法,更是如何让用户「问得更好」,从而激发出检索系统的全部潜力。

??时事1:姬小满裸体开腿被c网站

??04月14日,【两会30秒】成都市市长王凤朝:将进一步增强外国朋友旅游体验感,

  下面我要讲三个问题:

,碧蓝航线18+漫画。

??04月14日,国际商事仲裁理事会大会首次在香港揭幕,

  一个人的基本素质,是其思想、品德、知识、才能、 心理、体格等诸多方面因素的综合反映。作为党和政府在农村工作中的形象代表,村干部的基本素质如何,直接影响着村班子的战斗力,影响着党的方针政策的贯彻执行。农民群众从我们的村干部身上看我们的党,看我们的国家,是非常直接和具体的。我们常说“村看村,户看户,群众看,看支部”就是这个道理。当一个干部有良好的素质作底蕴,则他的能力就能充分发挥出来,而如果一个干部素质低下,即使他具备某方面较强的能力,也会被其素质所扼杀,不但不能为社会所用,反而会成为党的事业的障碍。因此,要适应新形势要求,完成全面建设小康社会的重任,关键在于从五个方面提高村干部的素质。

,中国❌❌奶头❌❌裸体,宁姚黄化版,大雷擦大狙软件免费视频大全。

??时事2:成任🔞va视频在线观看

??04月14日,北极寒流来袭 美国多地遭遇创纪录低温,

  天空中,光雾氤氲,一片朦胧,神秘而又深邃。

,美女cos裸体被❌羞羞,欧美真人无遮掩A片免费漫画,亚洲AV㊙️无码国产非洲。

??04月14日,强降雨持续 海南发布中小河流洪水和地质灾害风险预警,

  同学们,你们知道电话号码119是做什么的吗?对,是火警电话。也就是当发生火灾的时候,我们可以拨打119电话,消防队员就会以最快的速度来帮助灭火。

,足疗店熟女一69A,动漫❌❌爆乳❌❌玻璃❌无尽,性色AV色香蕉一区二区蜜桃。

??时事3:西德少女电影免费看

??04月14日,世界针灸学会联合会主席:多种“语言” 多种形式 促进针灸全球化传播,

  闻一多先生说得好:有志之人立长志,无志之人常立志。

,碧琪公主CG裸体图,最美情侣视频的免费观看,👅奶头张开腿被❌的视频。

??04月14日,中国国民党前秘书长李乾龙等台胞甘肃天水祭祀人文始祖伏羲,

  在大家的共同努力下,转眼间半个学期已过去,期中考试也顺利结束。今天,学校决定利用升旗时间召开期中考试表彰大会,表彰的是九年级第二次模拟考试前十名的同学和六至八年级期中考试前十名以及在期中考试中进步幅度较大的学生。为的是总结经验,分析形势,振奋精神,齐头并进,促进同学们抓紧学习,更快地提高成绩,争取在下一阶段的学习中有新的突破。

,小心🐤入🍑🍑视频蒂法,少妇的丰满2奇优影院,罗宾被扒开腿做❌同人漫画。

??时事4:污鱼社日韩精品

??04月14日,【每日一习话】下更大气力把队伍建强、让干部过硬,

  因为据了解,我们周围由于人们消防意识不强,消防安全隐患随处可见:清明节在山区烧纸钱、放鞭炮,到郊外野炊时架起的柴禾;家中长期插着的饮水机插头;无电之夜的蜡烛焰苗;忘了取下的充电器……这一系列的小问题,都有可能引起大火,危及人们的生命。所以,为了我们的生命安全,我们要增强消防安全的意识。

,成a人无码亚洲成a无码一区变态,XXNX78👙,男人和女人猛交XXXX免费漫画。

??04月14日,两万跑者齐聚湖北孝感 脚步丈量孝文化名城,

  “这头蛟看起来的确很好吃,但肯定没狻猊肉香,它不是太古遗种,真血绝对比不上。”另一个鼻涕娃补充道。

,yy8y熊1最新版本更新内容,18视频在线代码,欧美老妇肥唇BBB。

责编:谈月明

审核:张作珍

责编:杨庆军

相关推荐 换一换

Copyright (C) 2001- Dzwww   鲁ICP备09023866号-1

Sitemap